136 research outputs found

    Bird species involved in west nile virus epidemiological cycle in southern Québec

    Get PDF
    Despite many studies on West Nile Virus (WNV) in the US, including the reservoir role of bird species and the summer shifts of the Culex mosquito, feeding from birds to mammals, there have been few equivalent studies in the neighboring regions of Canada where WNV is endemic. Here, a priority list of bird species likely involved in WNV transmission in the greater Montréal area is constructed by combining three sources of data: (i) from WNV surveillance in wild birds (2002–2015); (ii) blood meal analysis of Culex pipiens–restuans (CPR), the primary enzootic vectors of WNV in the region, collected from surveillance in 2008 and 2014; (iii) literature review on the sero-prevalence/host competence of resident birds. Each of these data sources yielded 18, 23 and 53 species, and overall, 67 different bird species were identified as potential WNV amplifiers/reservoirs. Of those identified from CPR blood meals, Common starlings, American robins, Song sparrows and House sparrows ranked the highest and blood meal analysis demonstrated a seasonal shift in feed preference from birds to mammals by CPR. Our study indicates that there are broad similarities in the ecology of WNV between our region and the northeastern US, although the relative importance of bird species varies somewhat between regions

    Evidence for host-genotype associations of Borrelia burgdorferi sensu stricto

    Get PDF
    Different genotypes of the agent of Lyme disease in North America, Borrelia burgdorferi sensu stricto, show varying degrees of pathogenicity in humans. This variation in pathogenicity correlates with phylogeny and we have hypothesized that the different phylogenetic lineages in North America reflect adaptation to different host species. In this study, evidence for host species associations of B. burgdorferi genotypes was investigated using 41 B. burgdorferi-positive samples from five mammal species and 50 samples from host-seeking ticks collected during the course of field studies in four regions of Canada: Manitoba, northwestern Ontario, Quebec, and the Maritimes. The B. burgdorferi genotypes in the samples were characterized using three established molecular markers (multi-locus sequence typing [MLST], 16S-23S rrs-rrlA intergenic spacer, and outer surface protein C sequence [ospC] major groups). Correspondence analysis and generalized linear mixed effect models revealed significant associations between B. burgdorferi genotypes and host species (in particular chipmunks, and white-footed mice and deer mice), supporting the hypotheses that host adaptation contributes to the phylogenetic structure and possibly the observed variation in pathogenicity in humans

    Mapping clusters of chikungunya and dengue transmission in northern Tanzania using disease exposure and vector data

    Get PDF
    Background: Dengue and chikungunya are mosquito-borne viral diseases that are of public health importance throughout the tropical and subtropical regions of the world. Seasonal variations in transmission of these viruses have been suggested owing to the ecology of their mosquito vectors. However, little is known about the epidemiology of the diseases Tanzania. To address this gap, seasonal community-based cross-sectional surveys were undertaken to identify potential clusters of transmission in Hai district in northern Tanzania.Methods: Epidemiological and entomological data from two cross-sectional surveys were used to examine the spatial pattern of dengue and chikungunya transmission. Six villages namely, Boma Ng’ombe, Magadini, Rundugai, Nshara and Kware were involved in the study. Serological measures of dengue and chikungunya virus infections were derived using enzyme-linked immunosorbent assays, and all participants were geo-referenced to the household level using a global positioning system. Potential clusters of individual exposed to dengue and chikungunya virus , as well as clusters of Aedes mosquitoes in the wet and dry seasons were detected using SaTScan. All significant clusters (with p≤0.05) were mapped using ArcGIS.Results: A large, widely dispersed cluster of chikungunya exposed individuals was detected spanning Rundugai and parts of Magadini villages (RR = 2.58,  p= 0.01), while no significant clustering was observed in the dry season. Spatial clusters of Aedes aegypti were detected in Rundugai in both the wet and dry seasons (RR = 2.56, p< 0.001 and RR = 2.24, p=0.05, respectively). In the dry season a small cluster was also detected in Kware (RR = 2.25, p=0.05). No significant clusters of dengue were detected in both seasons.Conclusion: Clusters of chikungunya-exposed individuals and Aedes mosquitoes indicate on-going transmission of chikungunya virus in Hai district of northern Tanzania

    Risk maps for range expansion of the Lyme disease vector, Ixodes scapularis, in Canada now and with climate change

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lyme disease is the commonest vector-borne zoonosis in the temperate world, and an emerging infectious disease in Canada due to expansion of the geographic range of the tick vector <it>Ixodes scapularis</it>. Studies suggest that climate change will accelerate Lyme disease emergence by enhancing climatic suitability for <it>I. scapularis</it>. Risk maps will help to meet the public health challenge of Lyme disease by allowing targeting of surveillance and intervention activities.</p> <p>Results</p> <p>A risk map for possible Lyme endemicity was created using a simple risk algorithm for occurrence of <it>I. scapularis </it>populations. The algorithm was calculated for each census sub-division in central and eastern Canada from interpolated output of a temperature-driven simulation model of <it>I. scapularis </it>populations and an index of tick immigration. The latter was calculated from estimates of tick dispersion distances by migratory birds and recent knowledge of the current geographic range of endemic <it>I. scapularis </it>populations. The index of tick immigration closely predicted passive surveillance data on <it>I. scapularis </it>occurrence, and the risk algorithm was a significant predictor of the occurrence of <it>I. scapularis </it>populations in a prospective field study. Risk maps for <it>I. scapularis </it>occurrence in Canada under future projected climate (in the 2020s, 2050s and 2080s) were produced using temperature output from the Canadian Coupled Global Climate Model 2 with greenhouse gas emission scenario enforcing '<it>A2</it>' of the Intergovernmental Panel on Climate Change.</p> <p>Conclusion</p> <p>We have prepared risk maps for the occurrence of <it>I. scapularis </it>in eastern and central Canada under current and future projected climate. Validation of the risk maps provides some confidence that they provide a useful first step in predicting the occurrence of <it>I. scapularis </it>populations, and directing public health objectives in minimizing risk from Lyme disease. Further field studies are needed, however, to continue validation and refinement of the risk maps.</p

    Molecular Characterization of Haemaphysalis Species and a Molecular Genetic Key for the Identification of Haemaphysalis of North America

    Get PDF
    Haemaphysalis longicornis (Acari: Ixodidae), the Asian longhorned tick, is native to East Asia, but has become established in Australia and New Zealand, and more recently in the United States. In North America, there are other native Haemaphysalis species that share similar morphological characteristics and can be difficult to identify if the specimen is damaged. The goal of this study was to develop a cost-effective and rapid molecular diagnostic assay to differentiate between exotic and native Haemaphysalis species to aid in ongoing surveillance of H. longicornis within the United States and help prevent misidentification. We demonstrated that restriction fragment length polymorphisms (RFLPs) targeting the 16S ribosomal RNA and the cytochrome c oxidase subunit I (COI) can be used to differentiate H. longicornis from the other Haemaphysalis species found in North America. Furthermore, we show that this RFLP assay can be applied to Haemaphysalis species endemic to other regions of the world for the rapid identification of damaged specimens. The work presented in this study can serve as the foundation for region specific PCR-RFLP keys for Haemaphysalis and other tick species and can be further applied to other morphometrically challenging taxa

    Whole genome sequencing and phylogenetic analysis of strains of the agent of Lyme disease Borrelia burgdorferi from Canadian emergence zones

    Get PDF
    Lyme disease is emerging in southern Canada due to range expansion of the tick vector, followed by invasion of the agent of Lyme disease Borrelia burgdorferi sensu stricto. Strain diversity, as determined by Multi Locus Sequence Typing, occurs in this zone of emergence, and this may have its origins in adaptation to ecological niches, and have phenotypic consequences for pathogenicity and serological test performance. Sixty-four unique strains were cultured from ticks collected in southern Canada and the genomes sequenced using the Illumina MiSeq platform. A maximum likelihood phylogenetic tree of the chromosome revealed two large clades with multiple subclades. Consistent with previous studies on this species, the clades were not geographically defined, and some Canadian strains were highly divergent from previously sequenced US strains. There was evidence for recombination in the chromosome but this did not affect the phylogeny. Analysis of chromosomal genes indicated that these are under intense purifying selection. Phylogenies of the accessory genome and chromosome were congruent. Therefore strain differences identified in the phylogeny of chromosomal genes likely act as a proxy for genetic determinants of phenotypic differences amongst strains that are harboured in the accessory genome. Further studies on health implications of strain diversity are needed

    Leptospira infections in trappers from Ontario

    No full text
    BACKGROUND: Four trappers presented to the Middlesex-London Health Unit in November, 1997 with similar clinical presentations. All four complained of fever, chills and headache, and three of the four had severe muscle aches. All gave histories of trapping raccoons before the onset of illness. Three of the four men exhibited diagnostic seroconversions to Leptospira grippotyphosa

    Hantavirus pulmonary syndrome in Manitoba

    No full text
    The first confirmed case of hantavirus pulmonary syndrome in Manitoba was diagnosed in 1999. To define better the risk of exposure to hantaviruses in this area, the clinical features and epidemiological factors pertaining to this case were described, and a serological survey of rodents collected near the patient's residence was undertaken. Small mammals were collected using live traps, were anesthetized via inhalation of isoflurane and were bled. Human and mouse serologies were undertaken using an ELISA to detect hantavirus-specific immunoglobulin G and/or immunoglobulin M antibodies. In addition, a full medical and epidemiological assessment, as well as individual risk factor and exposure analysis, were conducted. A 27-year-old Manitoba woman presented with severe respiratory distress and diffuse bilateral air space disease radiologically. Despite extremely aggressive measures, including mechanical ventilation, antibiotics, fluid management and inotropic support, the patient's condition rapidly deteriorated, and she died 8 h after admission. Hantavirus pulmonary syndrome was confirmed by the detection of immunoglobulin M and immunoglobulin G antibodies to the Sin Nombre virus (SNV) in her sera and by the demonstration of SNV genomic sequences in her lung tissue. Exposure to hantavirus likely occurred in and around the home or in the rural area in which she resided. A total of 252 small mammals, primarily deer mice (Peromyscus maniculatus), were collected from 17 different sites at or near where the patient lived. Antibodies to SNV were detected in 28 of 244 (11.5%) deer mice, which were collected within 9 km of the residence of the fatal case, indicating that these rodents are a significant reservoir for SNV in this area

    Two Anaplasma phagocytophilum Strains in Ixodes scapularis Ticks, Canada

    No full text
    We developed PCR-based assays to distinguish a human pathogenic strain of Anaplasma phagocytophilum, Ap-ha, from Ap-variant 1, a strain not associated with human infection. The assays were validated on A. phagocytophilum-infected blacklegged ticks (Ixodes scapularis) collected in Canada. The relative prevalence of these 2 strains in I. scapularis ticks differed among geographic regions
    • …
    corecore